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• Public health is a relatively new area of study within medicine,
as its importance was brought into light during the mid-
nineteenth century cholera epidemics.

• Nowadays, public health and epidemiology are considered an
essential part of modern medicine.

• The idea of tracking and modelling a disease's spread is also
recent. John Snow's 'disease mapping' was a simple
geographical technique of identifying an outbreak's source and
journey, and was the first example of this.

• Today, intricate mathematical systems are used to model a
disease's spread instead. Not only can they accurately
predict a disease's
trajectory, but they also
allow for information
about the disease's activity
to be exchanged to health
authorities – allowing for
informed control decisions
to be made.

John Snow's 'disease map' of cholera cases
around Broad Street, London, 1854

Basic Model:
• Let's first imagine that a single person in a population is

infected with the disease we are analysing. Assuming the rate
of transmission from one person to another is constant, it will
take a certain time t for the person to infect another.

• This means after time t, the total number of infected people
will have doubled. This pattern is followed constantly,
meaning the number of people infected will double every unit
time t.

• The total number of infected people in the population can
therefore be modelled with the function:

Which can be re-written as:

This means its derivative can be calculated:

N = 2t

N = eln(2)t

dN/dt = ln(2)eln(2)t = ln(2)2t

Realistically, these three assumptions are false for all epidemics,
meaning a more complex model that is not based on these
assumptions must be constructed.

SIR Model
• The basic form of this mathematical model forms the basis 

of all epidemic models used today. It functions by splitting 
a given population (N) into three different categories: 
susceptible (S), infected (I), and removed (R) – so that S + I 
+ R = N. 

• A system  of three nonlinear ordinary differential equations 
is then constructed, with each category having its separate 
one.

• Like the previous one, this model follows assumptions 
about the population and rates of disease transfer. 
However, these assumptions are much more realistic.

1. The first differential equation is for the rate of change of 
susceptibles:

S = total susceptible
I = total infected
β = rate of contact between S and I
t = time

• It follows the assumption that the disease's transmission rate 
remains proportional to the contact time between the 
susceptibles and infectives – so the product of S and I is used.

• The equation is negative because the number of susceptibles
decreases with time as they become infected with the disease 
as the epidemic grows.

2.      The second differential equation is for the rate of change 
of                                                   infectives:

γ = removal rate of infectives

• This equation follows the assumption that the removal rate of 
infectives (recoveries and deaths) remains constant.

• The 'βSI' term is just a follow up from the previous equation –
the rate of decrease of susceptibles is the same as the rate of 
increase of infectives.

• The '- γI' term  is the rate of decrease of infectives as they move 
to the recovered category. Following the previously stated 
assumption, 'b' is the constant representing the rate of this.

3.    The third differential equation is the rate of change of 

Much like 'βSI', ' γI' is a follow up of the rate of 
decrease of infectives, as they move to the 
recovered category at the same rate they 
leave the infected category.

- S
- I
- R

How can this model exchange data?
• The value of the rate of change of infectives can be used to draw conclusions about the disease's activity: if 'βSI – γI' is greater than zero, the 

number of infections will increase with time and the disease will spread. The ideal scenario is for 'βSI – γI' to be less than zero, which means 
the number of infections will decrease with time and the epidemic will eventually end.

• If we eliminate the constant 'I', we are left with with 'βS – γ < 0'. If the 'γ' term is moved to the right side and both sides are then divided by 
'γ', we are left with 'βS/γ < 1'. The value of this inequality determines whether a disease spreads or dies out – and this can be used exchange 
information about the future of the epidemic.

• If the inequality holds, the disease will die out. So, health authorities such as the NHS will take measures to minimise the value of 'βS/b'. This is 
done by: 

- Minimising the rate of contact between susceptibles and infectives (β). Methods include: isolating, wearing face coverings, and washing 
hands – all of which was encouraged by the UK Government and NHS during the Covid-19 Pandemic.

- Minimising the number of people susceptible to the disease by providing vaccinations to the population, starting with the most 
vulnerable people (e.g. people over the age of 70). Being vaccinated against a disease eliminates your susceptibility to it.

- Maximising the removal rate of infectives (γ) by speeding up recovery from the disease. For example, giving infectants ventilators to 
maximise their respiratory air flow encourages their recovery to diseases. 

removals:

This allows the disease's rate of transmission to be calculated
for each given time t – allowing for data about the spread of the
disease to be exchanged to authorities.

However, this model is only valid if we assume: 
• Everybody in the population is susceptible to the disease.
• Nobody who becomes infected makes a recovery or dies.
• The rate of transmission from one person to another is 

constant.

The entire differential equation system can be visualised on a 
single population-time graph:


